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Abstract

Acoustic plane wave interactions with a rough seabed with a continuously varying density and sound
speed in a fluid-like sediment layer overlying an elastic basement is considered in this paper. The sediment
layer possesses a generalized exponential type of variation in density and one of the three classes of sound
speed profiles, which are constant, k2-linear, or inverse-square variations. Analytical solutions for the
Helmholtz equation in the sediment layer, combined with a formulation based upon boundary perturbation
theory, facilitate numerical implementation for the solution of coherent field. The coherent reflection
coefficients corresponding to the aforementioned density and sound speed profiles for various frequencies,
roughness parameters, basement stiffness, are numerically generated and analyzed. Physical interpretations
are provided for various results. The proposed model characterizes three important features of a realistic
sea floor, including seabed roughness, sediment inhomogeneities, and basement shear property, therefore,
provides a canonical environmental model for the study of seabed acoustics.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of acoustic wave interactions with sea floor has long been a subject of interest in
underwater sound, and is a major issue in seabed acoustics, particularly in recent pursuit of
geoacoustic inversion. The sea floor contains many important features affecting acoustic
propagation in oceans, among others, the seabed roughness, sediment inhomogeneities, and
basement shear property, may need to be considered one way or another, in order to cover a wide
range of frequency. Here, to illustrate the combined effects of the above-mentioned characteristics
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on acoustic interactions with the sea floor, we consider a simplest problem, i.e., a plane wave
interacting with such a sea floor; the overall environmental model is shown in Fig. 1. The special
features of the model include: (1) the seabed is rough, (2) the acoustic properties of the fluid-like
sediment vary continuously throughout the layer, and (3) the sea floor basement is an elastic
medium. Although, the problem is not completely new in the sense that several individual aspects
of the problem have been studied previously [1–5], however, those analyses were either limited or
incompleted (e.g., Ref. [2] only considers one type of the sound-speed profiles, and Refs. [3–5]
does not include seabed roughness and basement shear property), so that an integrated analysis
seems to be in order.
The present analysis in effect is a problem of acoustic wave propagation and scattering from

rough interfaces in a horizontally stratified medium, a subject that has raised many interests in the
past two decades in ocean acoustics, and many theories and numerical algorithms have thus been
developed, for example, the spectral or wavenumber integration method [1,6,7], the normal mode
method [8–10], and the parabolic equation method [11,12], etc.; these are well documented in
Ref. [13]. In practice, the present problem may completely be taken care of by a numerical
approach. However, in some cases, the Helmholtz equation for certain classes of sediments with
varying density and/or sound speed may permit exact solutions, and very often, these solutions
are directly applicable to a realistic environment. Under this situation, the exact solutions not only
are beneficial to the analysis per se, but also shed light on the correctness of numerical schemes,
making the search of the analytical solutions for the Helmholtz equation a constant interest.
In this regard, there are several well-known examples. For instance, for variable sound speed

with constant density, the Helmholtz equation may be solved for the Epstein profile [14], the linear
profile [15], and the k2-linear profile [16]. For isovelocity layer, an exponential profile for density is
frequently employed [17–21]. Recently, a generalized exponential density profile, jointly with a
constant, k2-linear, or inverse-square sound speed profile have been investigated in a sequence of
papers by Robins for a plane wave interacting with such a transition layer bounded by
unperturbed interfaces [3–5,22]; these density and sound speed profiles provide a model close to
realistic sediment layer [23], so that they are to be applied in this study.
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Fig. 1. A plane wave incident upon a two-dimensional rough seabed with a fluid-like sediment layer, possessing a

continuous increase of density and sound speed, overlying a uniform elastic basement.
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In terms of the overall analysis, none of the above-mentioned studies has included seabed
roughness, variable sediment, and basement shear property, simultaneously. Furthermore, the
results corresponding to the generalized exponential density profile associated with the inverse-
square sound speed profile are still limited due to a difficulty in the numerical treatment for the
involved special functions [4]. The present study shall take up a complete analysis on the coherent
reflection coefficients for various profiles, and the results are useful in the modelling of seabed
acoustics.

2. Formulations

Consider a monotonic acoustic plane wave with time dependence e�iot; propagating on the x–z
plane in a uniform fluid medium with density r0 and sound speed c0; impinging upon a one-
dimensional rough seabed with random elevation gðxÞ; as shown in Fig. 1. The sediment layer of
thickness h is considered to be fluid-like, with both density r1ðzÞ and sound speed c1ðzÞ varying
continuously with depth in a certain fashion, which is to be specified later. The basement is
assumed to be a uniform elastic semi-infinite medium with density r2; compressional sound speed
c2p; and shear sound speed c2s:

2.1. Helmholtz equations and boundary conditions

For the environmental model shown in Fig. 1, the Helmholtz equations for acoustic or seismic
waves in various layers are [16]

ðr2 þ k20Þp0 ¼ 0; ð1Þ

ðr2 þ k21Þp1 ¼
1

r1

dr1
dz

@p1

@z
; ð2Þ

ðr2 þ k22pÞf2 ¼ 0; ð3Þ

ðr2 þ k22sÞc2 ¼ 0; ð4Þ

where pi is the acoustic pressure in layer i; and f2 and c2 represent the displacement potentials for
compressible and shear wave in the basement, respectively. The medium wavenumber is defined as
ki ¼ o=ci; and is function of z in the sediment layer. It is noted that the term on the right-hand
side of Eq. (2) represents the effects of density variation in the medium.
The boundary conditions imposed by the physical constraints are

w0jz¼g ¼ w1jz¼g; ð5Þ

p0jz¼g ¼ p1jz¼g; ð6Þ

w1jz¼h ¼ w2jz¼h; ð7Þ

p1jz¼h ¼ �szz;2jz¼h; ð8Þ

0 ¼ srz;2jz¼h; ð9Þ
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where wi’s and si’s are, respectively, outward normal displacement and stress; g and h are,
respectively, the random roughness elevation and the thickness of the sediment layer. The
relationship between these physical quantities and the displacement potentials are well
documented and may be easily found in literature, e.g., Ref. [24].
It is clear that, since g is random, the acoustic fields in various layers are also random.

Under the framework of boundary perturbation analysis, the total field may be separated
into a deterministic coherent field and a random scattered field. According to the
theory developed by Kuperman and Schmidt [1], which is to be employed in later analysis, the
coherent field may be expressed in terms of a few operators involving only the problem for plane
interfaces; these operators effectively account for the scattering loss incurred by the surface
roughness.
With this in mind, we shall first formulate the problem for wave propagation in a horizontally

stratified medium with unperturbed interfaces, and then invoke the boundary perturbation
formulation to solve for the coherent reflection field.

2.2. Exact solutions of the Helmholtz equation in a continuously varying sediment layer

To proceed the analysis, the acoustic fields in the various layers should first be obtained. Since
the upper and the lower layers are uniform, the solutions are simply the exponential functions.
However, the solution of Eq. (2) for an arbitrary variation of density and/or sound speed
generally requires numerical procedure. Here, we are interested in the analytical solutions
corresponding to various combinations of density and sound speed profiles which are geologically
meaningful.
Under this consideration, it has been shown that the exact solutions of Eq. (2) may exist if the

density and the sound speed profiles satisfy the following combinations [8,15,20,21]:

rðzÞ ¼
Aeaz

ðeaz þ aÞ2
; generalized exponential; ð10Þ

1

c2ðzÞ
¼

1
&c2
1

; constant;

ð1þdzÞ
&c2
1

; k2-linear;

b2

&c2
0

þ 1
&c2
1

� b2

&c2
0

� �
1

ð1�kzÞ2
; inverse-square;

8>>><
>>>:

ð11Þ

where A; a; a; &c1; d; b; &c0; and k are constants, which when appropriately assigned may well fit the
profiles in a realistic sea floor [23]; an example of the profiles is shown in Fig. 2.
For a plane wave having the horizontal wavenumber kx ¼ k0 cos y0 ¼ ki cos yi; with y0 being

the incident grazing angle, the solution of Eq. (2) may be expressed as

p1ðx; zÞ ¼ *p1ðzÞeikxx: ð12Þ

ARTICLE IN PRESS

J.-Y. Liu et al. / Journal of Sound and Vibration 275 (2004) 739–755742



The solutions for *p1ðzÞ corresponding to various profiles shown above have been derived in
literature, and may be summarized as follows [3]:

*p1ðzÞ ¼
ffiffiffiffiffiffiffiffi
rðzÞ

p eisz; e�isz constant;

AiðZðzÞÞ;BiðZðzÞÞ; k2-linear;ffiffiffiffiffiffiffiffi
zðzÞ

p
H ð1Þ

n ðbzðzÞÞ;
ffiffiffiffiffiffiffiffi
zðzÞ

p
H ð2Þ

n ðbzðzÞÞ; inverse-square;

8><
>: ð13Þ

where Ai; Bi are the Airy functions, and H ð1Þ
n ; H ð2Þ

n are the nth-order Hankel functions; relevant
parameters/variables are defined below:

ZðzÞ ¼ �
1ffiffiffiffiffiffiffiffiffi
ð &k21d

3

q
Þ2

&k21dz þ &k21 � &k20 cos
2 y0 �

a2

4


 �
; ð14Þ

zðzÞ ¼ 1� kz; ð15Þ

s2 ¼
a2

4
� &k21 sin

2 y1; ð16Þ
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Fig. 2. Sample profiles for density and sound speed; values for various parameters are (units omitted): A ¼ 3687;
a ¼ �0:0385; a ¼ 0:511; &c1 ¼ 2311; 2350; 2703 (for constant, k2-linear, inverse-square sound speed profile, respectively),

d ¼ �0:0371; b ¼ 1:405; &c0 ¼ 4550; and k ¼ �0:04166: For comparison purpose, the constant sound &c1 is taken to be

the geometric mean of the inverse-square profile.
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b2 ¼
1

k2
&k20b

2 � &k20 cos
2 y0 �

a2

4


 �
; ð17Þ

n2 ¼
1

4
�

o2

k2
1

&c21
�

b2

&c20


 �
ð18Þ

with &k1 ¼ o=&c1 and y1 defined as &k1 cos y1 ¼ &k0 cos y0: It is to be noticed from Eq. (18) that for
high frequency, or any other factor rendering n2 negative, the Hankel function becomes imaginary
orders. While both the Airy functions and the Hankel functions are generally built-in in most
computational softwares, the imaginary order of Hankel functions may not be readily available,
so that a special treatment may be needed [3]. For this instance, the authors have found that
mathematica [25] is particularly useful in this analysis.

2.3. Reflection coefficient for an unperturbed seabed

According to the boundary perturbation theory [1], the same problem without seabed
roughness constitutes the fundamental formulation for the study of the coherent field for the
perturbed problem. Here, we establish the boundary operators based upon the solutions of the
Helmholtz equations and boundary constraints discussed in the previous two sections.
For an incoming plane wave propagating in kx direction, the solutions corresponding to

Eqs. (1)–(4) may be expressed as

p0ðx; zÞ ¼ A�
0 ðkxÞe�ik0;zzeikxx; ð19Þ

p1ðx; zÞ ¼ ½Aþ
1 ðkxÞGðkx; zÞ þ A�

1 ðkxÞHðkx; zÞ	eikxx; ð20Þ

f2ðx; zÞ ¼ Aþ
2 ðkxÞeik2p;zzeikxx; ð21Þ

c2ðx; zÞ ¼ Bþ
2 ðkxÞeik2s;zzeikxx; ð22Þ

where the vertical wavenumber ki;z in various layers are

k20;z ¼ k20 � k2x; ð23Þ

k22p;z ¼ k22p � k2x; ð24Þ

k22s;z ¼ k22s � k2x ð25Þ

and Gðkx; zÞ and Hðkx; zÞ are one of the solution sets in Eq. (13), depending upon the sediment
profile. The unknown amplitudes A7

i ðkxÞ’s and Bþ
2 ðkxÞ may be determined by the boundary

conditions.
For convenience to adapt the variation of density and sound speed profiles in the sediment

layer, the depth origin is taken to be in the center of the sediment layer. Applying the boundary
conditions corresponding to Eqs. (5)–(9), with the seabed assumed to be flat interface, results in a
linear system for the unknown amplitudes as

*BðkxÞ*wðkxÞ ¼ *CðkxÞ; ð26Þ
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where *wðkxÞ and *CðkxÞ are vectors defined as follows:

*wðkxÞ ¼ ½A�
0 ðkxÞ Aþ

1 ðkxÞ A�
1 ðkxÞ Aþ

2 ðkxÞ Bþ
2 ðkxÞ	T; ð27Þ

*CðkxÞ ¼ So � 1
i4pk0;z

1
r1o24p

0 0 0
h iT

ð28Þ

and *BðkxÞ is a matrix, which is

*BðkxÞ ¼

1 �Gðkx;�h=2Þ �Hðkx;�h=2Þ 0 0

ik0;z
r1o2

1
r1Uo2 H

0ðkx;�h=2Þ 1
r1Uo2 G

0ðkx;�h=2Þ 0 0

0 Gðkx; h=2Þ Hðkx; h=2Þ mð2k2x � k22s;zÞ m2kxk22s;z

0 1
r1Lo2

G0ðkx; h=2Þ 1
r1Lo2

H0ðkx; h=2Þ �ik2p;z ikx

0 0 0 �2kxk2p;z k2x � k22s;z

2
666666664

3
777777775
; ð29Þ

where r1U ðc1U Þ and r1L ðc1U Þ are, respectively, the density (sound speed) at the upper and the
lower boundary of the sediment layer. Solutions of Eq. (26) yield the acoustic fields in various
layers, including the reflection coefficient in the upper medium.

2.4. Coherent reflection from rough seabed

With the solutions for the unperturbed problem obtained in the previous section, the
formulation for the coherent reflection from the rough surface may be derived through boundary
perturbation method. Following the theory developed by Kuperman and Schmidt [1], the effects
of roughness on the coherent field may be represented by several operators accounting for surface
elevation and orientation. Since the theory and formulation are well documented in the literature,
there is no need to repeat here. In this section, we merely present the particular formalisms and
operators relevant to present analysis.
The derivation using boundary perturbation method leads to the following modified linear

system for the coherent field, as opposed to Eq. (26) for the unperturbed seabed:

*BðkxÞ þ
/g2S
2

@2

@z2
*BðkxÞ þ *IðkxÞ

� �
/*wðkxÞS ¼ *CðkxÞ; ð30Þ

where /g2S is the mean-squared roughness, and *I is a scattering operator given by

*IðkxÞ ¼ �
/g2Sffiffiffiffiffiffi
2p

p
Z
dq Pbðq � kxÞ

@

@z
*BðqÞ � iðkx � qÞ3 *bðqÞ

� �

� *B�1ðqÞ
@

@z
*BðkxÞ � iðq � kxÞ3 *bðkxÞ

� �
; ð31Þ

where Pb is the power spectrum of the rough surface, and the operation 3 is either inner or outer
product, depending upon the types of boundary condition; the details of the formulation should
be referred to the original paper [1].

ARTICLE IN PRESS

J.-Y. Liu et al. / Journal of Sound and Vibration 275 (2004) 739–755 745



Relevant operators appearing in Eqs. (30) and (31) are

@

@z
*BðkxÞ

¼

�ik0;z �G0ðkx;�h=2Þ �H0ðkx;�h=2Þ 0 0

k2
0;z

r1o2
1

r2Uo2 G
00ðkx;�h=2Þ 1

r2Uo2 H
00ðkx;�h=2Þ 0 0

0 G0ðkx; h=2Þ H0ðkx; h=2Þ ik2p;zmð2k2x � k22sÞ 2imkxk22s;z

0 1
r2Lo2

G00ðkx; h=2Þ 1
r2Lo2

H00ðkx; h=2Þ k22p;z �kxk2s;z

0 0 0 2kxk22p;z �ðk2xk2s;z � k32s;zÞ

2
666666664

3
777777775
;

ð32Þ

@2

@z2
*BðkxÞ

¼

�k20;z �G00ðkx;�h=2Þ �H00ðkx;�h=2Þ 0 0

ik3
0;z

r1o2
�1

r2Uo2 G
000ðkx;�h=2Þ �1

r2Uo2 H
000ðkx;�h=2Þ 0 0

0 G00ðkx; h=2Þ H00ðkx; h=2Þ �mð2kxk22p;z � k22sk
2
2p;zÞ �2mkxk32s;z

0 1
r2Lo2

G000ðkx; h=2Þ 1
r2Lo2

H000ðkx; h=2Þ ik32p;z �ikxk22s;z

0 0 0 �2kxk32p;z k2xk22s;z � k42s;z

2
666666664

3
777777775
;

ð33Þ

*bðkxÞ ¼

�ikx

r1o2
ikx

r2Uo2 Gðkx;�h=2Þ �ikx

r2Uo2 Hðkx;�h=2Þ 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
66666664

3
77777775
; ð34Þ

where the superscript 0 is the derivative with respect to z: The linear system, Eq. (30), may now be
solved for /*wS to obtain the coherent fields.

3. Results and discussion

The above formulations may be numerically implemented to show the effects of various
parameters on the coherent reflection field. Since there are numerous variables and parameters
in the problem, some of them are taken to be constant values, e.g., c0 ¼ 1500 m=s;
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r0 ¼ 1000 kg=m
3: For the seabed roughness, the Goff–Jordan power-law spectrum [26] is

employed:

PbðkÞ ¼
4k3�

ðk2 þ k2�Þ
2
; ð35Þ

where k� represents a characteristic wavenumber of the rough surface.
To ensure the correctness of the numerical algorithms, the following results, when possible,

have been asymptotically compared with those generated by current existing software OASES
[27], and were found a good agreement. A more detailed discussion regarding the benchmarking
procedure of the numerical results may be found in Ref. [2].
Fig. 3 shows the coherent reflection coefficients at frequency f ¼ 100 Hz for the seabed

environment shown in Fig. 2; the numerical values for various parameters are shown in the
legend, and the solid, dashed, dotted curves correspond to inverse-square, k2-linear, and constant
sound speed profile, respectively. It is noted that the sediment thickness h ¼ 30 m is twice of the
acoustic wavelength, and the acoustic properties (e.g., compressional sound speed) vary
substantiously throughout the sediment layer. Under this situation, the coherent reflection
coefficients corresponding to the different profiles demonstrate a quite different results. In
general, the inverse-square sound speed profile yields smaller coherent reflection coefficients. Since
these are the results corresponding to three different environmental models, their comparisons
may not be justified without a common ground. However, the distinctive results for various
sediment profiles clearly indicated that the modelling of sediment layer is an important process in
the study of seabed acoustics.
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A few special features in Fig. 3 should also be noted. The spike appearing at 60� is
obviously due to compressional sound speed, at which the compressional wave reaches
total reflection. Below this angle, energy continues to penetrate into the basement through
shear waves and rough surface scattering, so that the total reflection does not occur. The
oscillatory behavior reflects the degree of contrast in acoustic properties between various
layers, and the constant sound speed seems to have a highest contrast in this case. Furthermore,
the present analysis concerns the reflection under the effects of seabed roughness. In this
regard, Fig. 3 is to compare with Fig. 4, where the seabed roughness is suppressed. A
comparison between Figs. 3 and 4 reveals that the coherent reflection coefficient for the
smooth seabed is generally higher than that for rough seabed; moreover, the coefficient
reaches unity value at the angle corresponding to shear wave in the sea basement, which is
about cos�1ð1500=1800ÞC34� in the present case. These results clearly show that the seabed
roughness diverts energy away from the specular direction, therefore, reducing coherent energy as
expected.
Figs. 5 and 6 are the results for the same environmental parameters as Fig. 3, except now

the frequency is 30 and 120 Hz; respectively. At low frequency, e.g., 30 Hz (wavelength 50 m),
the coherent reflection coefficient is generally higher than that for high frequency, e.g.,
120 Hz: Moreover, for low frequency, the total reflection nearly occurs when the shear
critical angle arrives. These are all due to the fact that the seabed roughness becomes less
importance when the frequency is lowered. At high frequency, the coherent reflection coefficient is
greatly reduced, and the behavior of the curves shows the details of the structure of the layering
media.
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The magnitude of r.m.s. seabed roughness is expected to directly affect the coherent reflection
coefficient: the larger the magnitude (i.e., larger Rayleigh parameter, which is defined as P ¼
2k0

ffiffiffiffiffiffiffiffiffiffiffiffi
/g2S

p
cos yÞ; the stronger the scattered field, and thus the smaller the reflection coefficient,
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Fig. 7 shows the coherent reflection coefficient for k2-linear sound speed profile in the sediment
layer, and three values of r.m.s. roughness on seabed. The results indicate that the coherent
reflection coefficient decreases as r.m.s. roughness increases as expected; others profiles should
also yield similar results.
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On the other hand, the characteristic wavenumber (or equivalently the correlation length) of the
seabed roughness may have only a minor effect on the coherent field. Fig. 8 shows the results for
three values of the characteristic wavenumber. It is seen that the three curves are close to each
other, with only a slight difference at the higher and lower incident angles. These results are
reminiscent of the fundamental principles that the coherent field, being an ensemble average of the
total random field, mainly depends upon the gross structure of the rough surface, which is
represented by the r.m.s. roughness. The details of the roughness distribution represented by the
characteristic wavenumber, though important with respect to the scattered field as might be
expected, plays little role for the coherent field.
Finally, the coherent reflection coefficients corresponding to two other representative sound

speed distributions and sediment thicknesses are shown in Figs. 9 and 10 for frequency 120 Hz;
here, the sediment thickness is 20 m; and the sound speed at the lower boundary of the sediment
layer has a step jump with respect to the basement. These two figures show that, as the sound
speed profiles get closer to each others, the coherent reflection coefficients also get closer,
particularly in the range of high grazing angles; however, there still shows substantial difference
between the results for the inverse-square profile with those corresponding to the other two,
indicating that it is important to employ the appropriate model for the sediment layer in the study
of seabed acoustics. It is also noted that, in Fig. 10, there exists a spike near
cos�1ð1600=1800ÞC27� in the dotted curve, reflecting the strong sound speed contrast between
the isovelocity sediment layer and the basement.

4. Conclusions

In this paper, we have studied the coherent reflection of an acoustic plane wave from a rough
seabed with a continuously varying density and sound speed in the sediment layer overlying a
semi-infinite uniform elastic basement. The analysis combines the analytical solutions of the
Helmholtz equation in the sediment layer with a formalism based upon boundary perturbation
method to treat rough surface scattering. Numerical algorithms assisted by the current software
such as mathematica to deal with the special functions are developed to generate the coherent
reflection coefficients. The study offers a realistic model for the seabed environment, and is useful
in the simulation of seabed acoustics.
A generalized exponential density profile joined with one of the three classes of sound speed

profiles, including constant, k2-linear, and inverse-square, are employed and analyzed. The results
for the coherent reflection coefficients have shown that the variation of sound speed inside the
sediment layer may have a great influence on the coherent reflection field. Even only with a few
percent discrepancies, the k2-linear and inverse-square profiles still produce a discernible
difference in the coherent reflection coefficients. This indicates that the correct use of the sediment
profile is important in the modelling of seabed acoustics.
This study, although develops no new theory, provides a succinct formulation for the study of

the coherent reflection from a rough seabed, and yields many useful results. Extension of the
present analysis may consider to include shear property in the sediment layer, for which the
analytical solutions for the Helmholtz equation still await for further investigation.
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